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Abstract

An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to
enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To
obtain sharp density and viscosity discontinuities in an incompressible multi-phase flow a new multi-phase projection for-
mulation, in which the discretized gradient and divergence operators do not require a differentiable density or viscosity
field is proposed. Numerical examples for Taylor–Green flow, capillary waves, drop deformation in shear flows and for
Rayleigh–Taylor instability are presented and compared to theoretical solutions or references from literature. The results
suggest good accuracy and convergence properties of the proposed method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The smoothed particle hydrodynamics (SPH) method is a fully Lagrangian, grid free method in which a
smoothing kernel is introduced to approximate functions and their spatial derivatives originating from the
interactions with neighboring particles. Since its introduction by Lucy [9] and Gingold and Monaghan [6],
SPH has been applied to a wide range of flow problems [11,13]. The original formulation of SPH is for com-
pressible flows and permits the evolution of fluid densities along flow trajectories. When SPH is applied to
simulate incompressible flows, there are generally two ways to impose incompressibility: one is the weakly
compressible SPH formulation [12,15,3,18,10,8] which approximates incompressibility by assuming a small
Mach number, usually M 6 0:1; the other is the incompressible SPH in which incompressibility is enforced
by solving a Poisson equation with a source term proportional to the velocity divergence [4] or the density-
variation [17]. Compared with weakly compressible SPH the latter gives more accurate solutions and is com-
putationally more efficient for flow phenomena at moderate to high Reynolds numbers.

In an ideal incompressible SPH computation particles should adjust their positions to an uniform distribu-
tion so that their density variation vanishes. If only a discrete velocity-divergence-free condition is enforced
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larger density-variation or particle clustering may occur due to the spatial truncation error of the discretiza-
tion scheme. Furthermore, the density errors can accumulate during long time computations [4]. Pozorski and
Wawreńczuk [16] suggested to solve simultaneously the Poisson equations related to density variation and
related to velocity-divergence. However, their method does not solve the difficulties concerning particle clus-
tering and density error accumulation. Ellero et al. [5] introduce the SHAKE algorithm of molecular dynamics
to constrain the density-variation. While correcting the density error by modifying particle position iteratively,
their method produces relatively larger particle clustering than that of the weakly compressible SPH.

For multi-phase flows the interface represented by SPH is usually strongly smeared since both the diver-
gence and gradient operators are commonly formulated stipulating a differentiable density field with a gradi-
ent much smaller than that of the smoothing kernel [12,4]. Hu and Adams [8] have proposed a new particle-
averaged spatial derivative approximation to handle density and viscosity discontinuities directly without
smearing. Since there is no transition region with large density gradient, no spurious pressure (artificial surface
tension) is introduced [1]. This method, however, is based on a weakly compressible SPH formulation which in
practice is limited to small Reynolds numbers or mesoscopic flows.

In this paper, a technique for a multi-phase SPH by enforcing simultaneously constraints on density-var-
iation and on velocity is developed. The essential steps are that first the intermediate particle velocities are
computed at the intermediate half-time-step and at the full time-step, respectively, and that an intermediate
particle position at the full time-step is obtained from the previous time-step without enforcing any constraint.
In a second step the intermediate particle position at the full time-step is modified iteratively to satisfy the
zero-density-variation condition. At these new particle positions, the intermediate particle velocity at the full
time-step is modified by enforcing the velocity-divergence-free condition. As the viscous forces and surface
forces are always calculated with the constrained particle position and velocity at full time-steps, the veloc-
ity-divergence errors introduced by these forces are minimized.

Also, the projection method is extended to multi-phase flow following the approach of Hu and Adams [8].
For this new proposed gradient and divergence operators which do not involve the assumption of a differen-
tiable density or viscosity field the density, viscosity and pressure gradient discontinuities are handled natu-
rally. To allow for highly-efficient linear system solvers, such as the preconditioned conjugate gradient
method, the Poisson operator is discretized to result in a symmetric coefficient matrix. It should be emphasized
that, as similar approaches are employed to treat density and divergence constraints, the present method intro-
duces only a minor additional complexity compared to previous incompressible SPH methods.

2. Methods

We consider the isothermal incompressible Navier–Stokes equations in a moving Lagrangian frame
dq
dt
¼ 0 or r � v ¼ 0 ð1Þ

dv

dt
¼ g� 1

q
rp þ Fþ Fð1Þ

q
ð2Þ
where q, p, v and g are material density, velocity, pressure and body force, respectively. The two expressions
(zero-density-variation and velocity-divergence-free) in Eq. (1) give formally equivalent conditions for an
incompressible flow. In the equation of motion Eq. (2), F denotes the viscous force
F ¼ mr2v ð3Þ

where m ¼ g=q is the kinematic viscosity. Fð1Þ denotes the surface force which acts at a phase-interface only.
For an immiscible mixture the surface force is given as
Fð1Þ ¼ r �Pð1Þ ð4Þ

where the surface stress is
Pð1Þ ¼ a
1

jrCj
1

d
IjrCj2 �rCrC

� �
ð5Þ
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and a is a surface-tension coefficient, d is the spatial dimension andrC is the gradient of a color index C which
has a unit jump across the interface.

In [8], the smoothing function for particle i is given by
viðrÞ ¼
W ðr� ri; hÞP

kW ðr� rkÞ
¼ W iðrÞ

rðrÞ ð6Þ
where ri is the position of particle i, k ¼ 1; . . . ;N . N is the total particle number and h is the smoothing length.
W ðrÞ is a generic shape function known as the SPH smoothing kernel. rðrÞ is a measure of the particle number
density which has a larger value in a dense particle region than in a dilute particle region. We also introduce
the volume of a particle through the integral over the entire domain Vi ¼

R
viðrÞdr � 1

rðriÞ which shows that
ri ¼ rðriÞ ¼
X

j

W ij ð7Þ
where W ij ¼ W ðrijÞ ¼ W ðri � rjÞ, is approximately the inverse of the particle volume, i.e. the specific volume.
The particle density is given by
qi ¼
mi

V i
¼ miri ð8Þ
where mi is mass of particle. Since mi does not change through the computation in a mass-conservative incom-
pressible SPH formulation, the zero-density-variation condition needs that ri is also kept unchanged.

For a smooth variable wðrÞ, two forms of discretizations for the particle-averaged spatial derivative are pro-
posed in Hu and Adams [8]. The second of these forms is
rwi � ri

X
j

1

r2
i
þ 1

r2
j

 !
�wij

oW
orij

eij ¼ ri

X
j

Aij
�wijeij ð9Þ� �
where Aij ¼ 1
r2

i
þ 1

r2
j

oW
orij

, oW
orij

eij ¼ rW ðri � rjÞ, and oW
orij
6 0, ri � rj ¼ rij ¼ rijeij, and eij is the normalized vector

pointing from particle i to j. �wij ¼ �wðwðriÞ;wðrjÞÞ is an inter-particle-averaged value. Eq. (9) allows to formu-
late different inter-particle averages or to assume different inter-particle distributions. For example, a simple
inter-particle average is
�wij ¼
1

2
½wðriÞ þ wðrjÞ� ð10Þ
For the particle-averaged second-order spatial derivative one can set w ¼ ru to formulate the inter-particle
average of the derivative along the direction from particle i to j by
ruij ¼
eij

rij
uij ð11Þ
where uij ¼ uðriÞ � uðrjÞ, and discretize the second-order derivative (Laplacian) directly by
r � rui � ri

X
j

Aij
uij

rij
ð12Þ
2.1. Projection method

A fractional time-step integration approach is used to solve Eqs. (1) and (2). First, the half-time-step veloc-
ity is obtained by
v
nþ1=2
i ¼ vn

i þ f � 1

q
rp

� �n

i

Dt
2

ð13Þ
Subsequently, the particle position at the new time-step is calculated by
rnþ1
i ¼ rn

i þ v
nþ1=2
i Dt ð14Þ
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and the particle velocity at the new time-step is obtained by
vnþ1
i ¼ v

nþ1=2
i þ f � 1

q
rp

� �n

i

Dt
2

ð15Þ
The two incompressibility conditions in Eq. (1) are enforced simultaneously. The first condition, the zero-density-
variation condition, is satisfied by computing the pressure gradient in Eq. (13) to adjust the positions of particles
for an unchanged ri in Eq. (8). The second condition, the velocity-divergence-free condition, is satisfied by com-
puting the pressure gradients in Eq. (15) to adjust the particle velocity to obtain a divergence-free velocity field.

2.1.1. Zero-density-variation condition

We split Eqs. (13) and (14) into an intermediate step and into a correction step. The intermediate velocity
v
�;nþ1=2
i and the intermediate particle position r�;nþ1

i are obtained by
v
�;nþ1=2
i ¼ vn

i þ f iðrn; vnÞDt
2
; r�;nþ1

i ¼ rn
i þ v

�;nþ1=2
i Dt ð16Þ
respectively. The intermediate particle density q�;nþ1
i satisfies
q�;nþ1
i � qn

i

Dt
þ qn

iri � v�;nþ1=2 ¼ 0 ð17Þ
The half-time-step particle velocity v
nþ1=2
i is obtained by
v
nþ1=2
i ¼ v

�;nþ1=2
i � rp

q

� �n

i

Dt
2

ð18Þ
From the zero-density-variation condition qnþ1
i ¼ qn

i and the velocity-divergence-free condition ri � vnþ1=2 ¼ 0
one obtains the following relation from Eqs. (17) and (18)
Dt2

2
r � rp

q

� �n

i

¼ qn
i � q�;nþ1

i

qn
i

ð19Þ
which has a similar form as that in [17]. Note that with the relations qn
i ¼ qi ¼ mir0

i and q�;nþ1
i ¼ mir

�;nþ1
i Eq.

(19) can be rewritten to
Dt2

2
r � rp

q

� �n

i

¼ r0
i � r�;nþ1

i

r0
i

ð20Þ
in which the right-hand side equals to the relative error of particle density. At the new time-step the particle
position rnþ1 can be obtained by the correction step
rnþ1 ¼ r�;nþ1 � rp
q

� �n

i

Dt2

2
ð21Þ
In practice Eqs. (20) and (21) are not solved separately but incorporated into the following iterative scheme
Dt2

2
r � rp

q

� �n;m�1

i

 r0
i � r�;nþ1;m�1

i

r0
i

ð22aÞ

rnþ1;m  rnþ1;m�1 � rp
q

� �n;m�1

i

Dt2

2
ð22bÞ

r�;nþ1;m
i  rnþ1;m ð22cÞ
where m is the number of an iteration step and r�;nþ1;m
i is obtained from Eq. (7) with updated particle positions.

2.1.2. Velocity-divergence-free condition

An intermediate velocity at the full time-step v�;nþ1 is obtained by
v�;nþ1
i ¼ v

�;nþ1=2
i þ f iðrn; vnÞDt

2
ð23Þ
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The velocity at the full time-step vnþ1 is obtained by
vnþ1
i ¼ v�;nþ1

i � rp
q

� �n

i

Dt
2

ð24Þ
To enforce the velocity-divergence-free condition at the new time step, the divergence of Eq. (24) is taken, and
by ri � vnþ1 ¼ 0 one obtains the required pressure distribution from
Dt
2
r � rp

q

� �n

i

¼ ri � v�;nþ1 ð25Þ
We make the following observations:

� The viscous forces and surface forces are always calculated by Eq. (23) at the corrected full time-step par-
ticle position and velocity, the divergence errors introduced by the discretizations of these forces are there-
fore minimized.
� In practice, the density correction of Eq. (22) is only performed at those time-steps for which the maximum

density error for at least one particle is larger than a certain threshold. As the density errors after a single
time-step are small, the density correction usually is rarely invoked and the increase of computational
expenses is rather low. Typically, the number of iteration decreases if larger density error is permitted,
or if the particle resolution is carried increased. Our experience suggests that the iteration count is less than
Oð10Þ if the permitted maximum density error is 1% or 0.5%.
� As shown in the next section, the discretization operators and linear-system solvers involved in enforcing

the density and velocity constraints, Eqs. (20) and (25), are the same. The use of a density constraint in
addition to the velocity constraint introduces only a minor coding overhead as compared to previous
approaches.

2.1.3. A multi-phase projection formulation

Since velocity, pressure and viscous forces are continuous even for a discontinuous density rp
q has to be con-

tinuous owning to Eqs. (20) and (25). If q is discontinuous rp is also discontinuous. For a single-phase incom-

pressible flow with density q the inter-particle-averaged directional derivative rp
q

� �
ij is approximated by

Eq. (11) as
rp
q

� �
ij ¼

pij

qrij
eij ð26Þ
where pij ¼ pi � pj. If particle i and j belong to different phases with a density discontinuity one can assume
that the phase-interface is located at the center m between particle i and j, and that the discontinuity is on a

plane normal to the inter-particle vector rij. To ensure the continuity of rp
q

� �
ij and of the pressure across the

interface we require
pim

qirim
eim ¼

pmj

qjrmj
emj ð27Þ
where rim ¼ rmj ¼ 1
2
rij, eim ¼ emj ¼ eij, and pij ¼ pim þ pmj. The inter-particle-averaged rp

q

� �
ij at the phase-inter-

face is
rp
q

� �
ij ¼

2

rij

pij

qi þ qj
eij ð28Þ
which gives the inter-particle pressure
pm ¼
qipj þ qjpi

qi þ qj
ð29Þ
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According to Eq. (12), the Poisson operators in Eqs. (20) and (25) can be discretized as
r � rp
q

� �
i

¼ 2ri

X
j

Aij

rij

pij

qi þ qj
ð30Þ
The resulting discretization for Eq. (20) can be written as
X
j

Aij

rij

pij

qi þ qj
¼ 1

2

r0
i � r�i
r0

i r
�
i

ð31Þ
The right-hand side of Eq. (25) is discretized as
ri � v� ¼ ri

X
j

Aijv
�
ij � eij ð32Þ
For single-phase flow one can define the inter-particle average velocity v�ij by Eq. (10). If particle i and j belong
to different phases with a viscosity discontinuity, the inter-particle-averaged velocity is given by
vm ¼
givi þ gjvj

gi þ gj
ð33Þ
in which gi and gj are viscosities for the two particles, to ensure continuity of the viscous force [8]. Hence, the
resulting discretization for Eq. (25) can be written as
X
j

Aij

rij

pij

qi þ qj
¼ 1

2

X
j

Aij
givi þ gjvj

gi þ gj

 !
� eij ð34Þ
According to Eq. (29) one can discretize the pressure gradient as
rp
q

� �
i

¼ 1

mi

X
j

Aij
qipj þ qjpi

qi þ qj
eij ð35Þ
Note that the left-hand side of Eqs. (31) and (34) have the same expressions and define a symmetric linear
system for periodic or von Neumann boundary conditions [4]. Therefore, highly-efficient solvers, such as
the preconditioned conjugate gradient method, can be implemented in a straightforward way. In [4,17], the
projection operator is symmetric for single-phase flows but not for flows with variable density. Note that,
as the projection operator involves all neighboring particles (for example about 21 particles for a quartic spline
smoothing kernel and about 29 particles for a quintic spline smoothing kernel) in the SPH method, the band
width of the coefficient matrix is much wider than that of a moderate-order finite difference method. There-
fore, the same elliptic solver requires considerably more operations for an SPH method than for such a finite
difference method.

2.1.4. Reference pressure

When Eqs. (31) and (34) are solved with zero initial values under a von Neumann boundary condition neg-
ative pressure may occur in some region of the computational domain. It is well known that a negative pres-
sure may cause stability problems in SPH. To overcome this difficulty a constant positive reference pressure is
superimposed onto the computed pressure. Following Morris et al. [15] and Hu and Adams [8], a physically
reasonable reference pressure pref can be estimated by considering the balance of forces in the equation of
motion (2). Given a velocity scale V 0 and length scale L0, the terms on the right-hand side should be of com-
parable magnitude, that is
pref

qmax

� V 2
0 �

mmaxV 0

L0

� gL0 � max
akljkl

c

minðqk; qlÞ

� �
; k 6¼ l ð36Þ
where qmax and mmax are the maximum density and kinematic viscosity, respectively. akl and jkl
c are surface ten-

sion and typical curvature between phase k and l, respectively. After a simulation has been run initially at low
resolution and the actual variation in pressure is known, the value of pref can be changed to ensure a positive
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pressure p. As the conservative discretization of pressure gradient, Eq. (9), in SPH method produces residual
fluctuation even for constant pressure, the introduction of a reference pressure leads to small fluctuations pro-
portional to the reference pressure magnitude. Therefore, one should choose pref as small as possible for better
accuracy.

2.2. Time-step criteria

For stability several time-step criteria [11] must be satisfied, including a CFL condition
Dt 6 0:25
h

jU jmax

ð37Þ
where jU jmax is the maximum velocity in the flow, a viscous-diffusion condition
Dt 6 0:25
h2

mmax

ð38Þ
where mmax are the maximum kinematic viscosity, and surface tension condition [2,8]
Dt 6 0:25 min
minðqk; qlÞh3

2pakl

� �1=2

; k 6¼ l ð39Þ
As the CFL time-step condition for weakly compressible SPH is
Dt 6 0:25
h

cmax þ jU jmax

ð40Þ
where cmax P 10jU jmax is the maximum artificial sound speed, it is computationally less efficient than the
incompressible SPH when the flow evolution is not dominated by the viscous force or the surface tension.
If the flow is viscosity or surface-tension dominated, the efficiency of incompressible SPH can be further in-
creased by a multi-time-step technique, in which the viscous force and the surface tension calculated, by Eqs.
(16) and (23), are updated with time-steps according to conditions (38) and (39), whereas the pressure projec-
tion is performed with time-steps according to condition (37).

As the error introduced by the reference pressure may cause a stability problem, in the present method also
a global time-step criterion needs to be introduced
Dt 6 0:25
h

cref þ jU jmax

ð41Þ
where cref is the artificial reference sound speed defined by pref ¼ qminc2
ref . From Eqs. (36) and (41), it can be

found that for a single-phase flow or flows with moderate density ratios cref is of the order of jU jmax. Then the
new time-step criterion only slightly decreases the time-step size. However, for large density ratios the time-
step limit by Eq. (41) is dominant. Whenever the resulting time-step size is close to that of a weakly compress-
ible SPH method, the incompressible SPH is computationally less efficient since enforcing the incompressible
conditions causes computational overhead.

3. Numerical examples

The following two-dimensional numerical examples are provided to validate the proposed incompressible
multi-phase SPH method. For all cases a quintic spline kernel [15] is used. A constant smoothing length, which
is kept equal to the initial distance between the neighboring particles, is used for all the test cases. As elliptic
solver a diagonal or SSOR preconditioned conjugate gradient method is used. If not mentioned otherwise, the
permitted maximum density error is 1%, and no-slip wall boundary conditions are implemented following the
approach of Cummins and Rudman [4].
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3.1. Two-dimensional Taylor–Green flow

The two-dimensional viscous Taylor–Green flow is a periodic array of vortices, where the velocity
Fig. 1
analyt
uðx; y; tÞ ¼ �U ebt cosð2pxÞ sinð2pyÞ
vðx; y; tÞ ¼ U ebt sinð2pxÞ cosð2pyÞ

ð42Þ
is an exact solution of the incompressible Navier–Stokes equation. b ¼ � 8p2

Re is the decay rate of velocity field.
We consider a case with Re ¼ 100. The computation is performed on a domain 0 < x < 1 and 0 < y < 1 with
periodic boundary conditions in both directions. The initial particle velocity is assigned according to Eq. (42)
by setting t ¼ 0 and U ¼ 1. In order to study the convergence properties the calculation is carried out with
900, 3600, 14,400 particles, respectively. Two initial particle configurations are considered: one is starting from
regular lattice positions; the other is starting from previously stored particle position (relaxed configuration).
The following discussion is based on results calculated from the latter, while the results calculated from lattice
configurations are used to study the influence of initial particle position.

Fig. 1 shows calculated positions of particles and vorticity profile, respectively, at t ¼ 1 with 3600 particles.
It can be observed that a uniform particle distribution without clustering is produced. The current SPH sim-
ulation recovers the theoretical solution quite well with somewhat larger errors in regions close to the centers
of vortex cells. Fig. 2a shows the evolution of the maximum velocity of the flow calculated with 900 particles.
Compared to the analytical solution the current method predicts the decay process very accurately. When the
same case is run from an initial lattice configuration the predicted decay rate is slight larger (see Fig. 2a for the
line denoted as A). However, for both cases the difference to the analytical solution is small. At time t ¼ T max,

where U T max
max ¼ U

50
, the relative error U ex

max�USPH
max

Uex
max

��� ���, where U ex
max denotes the maximum velocity of the exact solution

and U SPH
max that of the simulation, reaches at most 2% which is even smaller than the 4% obtained by starting

from a relaxed particle configuration. Note that with only about 1/10 the number of particles the accuracy of
the current simulation is comparable with that of the re-meshing SPH method [3] (see their Fig. 3), in which
the errors caused by particle disorder are reduced by re-sampling the SPH particles at every time-step.

If the particle density is not constrained with Eq. (22), as shown in Fig. 2a (the line denoted as B) the error
increases considerably. Furthermore, if the particle density is not constrained and the computation starts from
a lattice configuration, the errors increase further (see Fig. 2a for the line denoted as C). Another difficulty
. Taylor–Green problem at t ¼ 1 with 3600 particles: (a) positions of particles; (b) simulated vorticity profile (solid line) and
ical solution (dash line).



Fig. 2. Taylor–Green problem with 900 particles: (a) decay of the maximum velocity; (b) particle density profile at t ¼ 1.
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encountered for an unconstrained solution is that the density error may accumulate if a strong vortical flow
evolves in the solution [4]. As shown in Fig. 2b, the unconstrained solution has a relative density error close to
4% while the error is 1% for the constrained solution. On the other hand, the relative density error for the
unconstrained solution apparently strongly depends on the initial particle configuration. As shown in
Fig. 2b, the relative errors can reach more than 20% when starting from the lattice configuration.

For convergence analysis, we calculate the relative error of the computed maximum velocity up to time T max

shown in Fig. 3a for the solution with 900, 3600 and 14,400 particles. The L1 errors are obtained by
Fig. 3.
y ¼ 0:3
L1 ¼ max
U ex

max � U SPH
max

U ex
max

����
����

� �
ð43Þ
Taylor–Green problem: SPH solution with different resolutions: (a) relative errors for maximum velocity; (b) velocity profiles u at
and v at y ¼ 0:5.
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It is found that the convergence rate of the L1 error is about first order.
The calculated velocity profiles in x direction at two positions, y ¼ 0:3 and y ¼ 0:5, with different resolu-

tions are shown in Fig. 3 which indicate an about first order convergence rate for the peak velocities.

3.2. Capillary wave

We consider two problems of liquid-droplet oscillation under the action of capillary forces. The first prob-
lem, taken from Morris [14] and Hu and Adams [8], is a droplet oscillating in a liquid phase with the same
density. The second problem, taken from Wu et al. [21], is a droplet oscillating in a liquid environment with
different density.

For the first problem, the computation is performed on a domain 0 < x < 1 and 0 < y < 1 using fluids of
the same density qd ¼ ql ¼ 1 and equal viscosity g ¼ 0:05. A droplet of radius R ¼ 0:1875 is placed at the
domain center and the surface-tension coefficient is a ¼ 1. To all particles a divergence-free initial velocity

vx ¼ V 0
x
r0

1� y2

r0r

� �
exp � r

r0

� �
and vy ¼ V 0

y
r0

1� x2

r0r

� �
exp � r

r0

� �
is assigned, where V 0 ¼ 10, r0 ¼ 0:05, and r

is the distance from the position ðx; yÞ to the droplet center. In order to study the convergence properties
the calculation is carried out with 900, 3600, 14,400 particles, respectively.

Fig. 4 shows the positions of the droplet particles at four selected time instants with 14,400 particles. It is
observed that particle distribution is in quite good agreement with the results of Hu and Adams [8] (their
Fig. 4). Fig. 5 compares the variation of the center-of-mass position and velocity of the upper left 1/4 part
of the droplet with different resolutions. The computed first period at the highest resolution is about 0.35.
Compared with the results in Hu and Adams [8], we find that while the computed periods differ by only
3% the noise caused by artificial sound waves in the weakly compressible SPH is eliminated by the present
method. First order convergence rates are obtained for both mass center position and velocity by calculating
the relative error between different resolutions. Again, the accuracy is quite close that of weakly compressible
SPH [8] while numerical artifacts are removed.

For the second problem, the computation is performed on a domain 0 < x < 12 and 0 < y < 8, and an elliptic
droplet defined by x2=4þ y2 ¼ 1 is placed at the domain center and the surface-tension coefficient is a ¼ 1. The
densities inside and outside of the drop are 1.5 and 0.5, respectively, and the viscosity is 1	 10�2. Initially, the
particle velocity is set to zero. The problem is simulated with 3456 particles.

Fig. 6 shows the positions of the droplet particles at 4 selected time instants. It is observed that the interface
deformation is in quite good agreement with the results of Wu et al. [21] obtained by a higher resolution finite-
element calculation (their Fig. 4). The corresponding time history of the center-of-mass position in x direction
of the upper left 1/4 part and the total kinetic energy of the drop are shown in Fig. 7. The oscillation period is
estimated (based on the first two cycles) to be 7.38 which is, again, close to the result of 7.6 in Wu et al. [21].

3.3. Drop deformation in shear flow

We consider a circular drop with initial radius R0 ¼ 0:02 in a Couette flow with top and bottom wall veloc-
ity of 
v, respectively. The periodic computational domain is the region 0 < x < 8R0 and 0 < y < 8R0 in which
the drop is centered at ð4R0; 4R0Þ. The calculation is carried out with 9216 particles. The drop deforms with the
flow until a balance between viscous stresses and surface tension is reached. It is known that the shape of
sheared drop is governed by two nondimensional parameters, i.e. the viscosity ratio k ¼ gd=gc, where gd

and gc are, respectively, the viscosities of the drop and the shearing fluid, and the capillary number
Ca ¼ 0:25gdv=a. According to Taylor [19], a linear deformation is predicted theoretically under the condition
of small capillary number, and the deformation parameter is given by
D ¼ Ca
19kþ 16

16kþ 16
ð44Þ
in which D ¼ ðL� BÞ=ðLþ BÞ, L and B are the drop’s half-length and half-width, respectively.
Fig. 8a shows the final equilibrium stage when Ca ¼ 0:15 and k ¼ 1. Note that the shape of the deformed

drop agrees with the weakly SPH simulation result [8] quite well while the present method produces a notably



Fig. 4. Droplet oscillation with qd=ql ¼ 1: positions of particles at t ¼ 0, 0.08, 0.16 and 0.26.
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uniform particle distribution. The measured D is about 0.153 which is close to the result obtained by Zhou and
Pozrikidis [22] and Hu and Adams [8]. Fig. 8b shows a comparison of the results of [22,8] and the current
computations for several capillary numbers. To study the dependence on the viscosity ratio, we simulate
the drop deformation for Ca ¼ 0:15 with different viscosity ratios, ranging from k ¼ 0:01 to 100. In Fig. 9a
can be seen that the drop deformation increases with k. Note that predicted deformation variations are less
than that obtained from [8]. The present results are in accordance with the theoretical prediction by Eq.
(44) which implies that D only increases slightly with k.

The drop deformation in the non-linear regime is also examined. Fig. 9b shows the deformed drop for
Ca ¼ 1:5 and Re ¼ 0:25qR0v=gc ¼ 3. The drop does not break up even after being stretched to form a strip
with the length about twice that of the domain width. Note that the strip center is thicker than the two necks,
which is in agreement with the three-lobed mode for drop deformation under conditions of large capillary
number but small Reynolds number [20].



Fig. 6. Droplet oscillation with qd=ql ¼ 3: positions of particles at four selected time instants.

Fig. 5. Droplet oscillation with qd=ql ¼ 1: convergence test.

X.Y. Hu, N.A. Adams / Journal of Computational Physics 227 (2007) 264–278 275
3.4. Rayleigh–Taylor instability

We consider a Rayleigh–Taylor instability problem which has been studied by Cummins and Rudman [4]
with three different methods: finite differences, weakly compressible SPH and incompressible SPH. The com-
putation is performed on a domain 0 < x < 1 and 0 < y < 2. Initially, the particles are placed on regular lat-
tice positions. In the lower part of the domain are particles with density ql ¼ 1:0. In the upper domain, defined



Fig. 7. Droplet oscillation with qd=ql ¼ 3: (a) mass center position, in x direction, of the upper left 1/4 part; (b) total kinetic energy of the
drop.

Fig. 8. Drop deformation in a shear flow: (a) particle positions of the drop (black dots) and the shearing fluid (open circles) when
Ca ¼ 0:15 and k ¼ 1; (b) relation between the deformation parameter and capillary number.
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by y > 1� 0:15 sinð2pxÞ, are particles with density qu ¼ 1:8. The Reynolds number is set to Re ¼ 420 and the
Froude number is set to Fr ¼ 1. No surface tension is included. The initial particle velocity is set to zero, and
the permitted maximum density error is 0.5%. The calculation is carried out with 7200 particles, which gives a
similar resolution as that in [4].

The calculated positions of particles at time t ¼ 1, 3 and 5 are shown in Fig. 10. Note that the interface
evolves into an asymmetric shape because the spike falls (heavy into light fluid) faster than the bubble rises
(light into heavy fluid). The general features shows a good agreement with the results in [4] (see their Figs.
10 and 11). However, the present results predict a much stronger roll-up of the plumes than their results



Fig. 10. Rayleigh–Taylor instability: position of particles at three selected time instants.

Fig. 9. Drop deformation in a shear flow: (a) drop deformation with different viscosity ratios; (b) deformation of drop with Ca ¼ 1:5 and
Re ¼ 3.
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obtained by incompressible SPH and weakly compressible SPH (comparing the present Fig. 10b and c to their
Figs. 10b and c and 11b and c). It is quite interesting that the present results indicate even slightly stronger roll-
up than that obtained by the finite-difference simulation at similar resolution (comparing to their Figs. 10a and
11a). According to Hoover [7], this may be expected since the present method treats density discontinuities
directly, and furthermore the non-smeared density discontinuity strongly increases the baroclinic vorticity pro-
duction and hence introduces a considerably larger roll-up effect. Compared to finite difference methods which
also smoothen the density discontinuities within a narrow band of several grid points, the present SPH algo-
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rithm represents the interface in an even sharper way by recovering an exact discontinuity. Another important
property of the present results is that there is no noticeable ’’particle clumping’’ problem (see Fig. 13 in [4]), in
which the spurious pressure (artificial surface tension) prevents the formation of high curvature and produces
a gap at the interface [1]. These interface properties of the present method imply a considerably smaller inter-
face dissipation which explains the quickly developing secondary instabilities as shown in Fig. 10c.

4. Concluding remarks

We have developed an incompressible multi-phase SPH method in which both the zero-density-variation
and velocity-divergence-free constraints of the incompressability condition are enforced by a fractional
time-step integration algorithm. A new multi-phase projection formulation in which the gradient and diver-
gence operators are not restricted to a differentiable density and viscosity field is developed to obtain non-
smeared density and viscosity discontinuties. Numerical examples are investigated and compared with analytic
solutions and previous results. The results show that the method can be reliably applied to incompressible sin-
gle-phase and multi-phase flows within and beyond the low Reynolds number region. In addition, since very
similar approaches are employed to treat density and divergence constraints, the present method increases
coding complexity only slightly.
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